OFFSET
0,1
COMMENTS
This is equivalent to F(n)+2 or 2^(2^n)+ 1 + 2. Conjecture: If n is odd, 7 is a divisor of F(n,3).
The conjecture is true: the order of 2 mod 7 is 3, and if n is odd then 2^n == 2 mod 3 so 2^(2^n) + 3 == 2^2 + 3 == 0 mod 7. - Robert Israel, Nov 20 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..11
Tigran Hakobyan, On the unboundedness of common divisors of distinct terms of the sequence a(n)=2^2^n+d for d>1, arXiv:1601.04946 [math.NT], 2016.
FORMULA
F(n,m): The n-th Fermat number of order m = 2^(2^n)+ m. The traditional Fermat numbers are F(n,1) or Fermat numbers of order 1.
MATHEMATICA
Table[(2^(2^n) + 3), {n, 0, 15}] (* Vincenzo Librandi, Jan 09 2013 *)
PROG
(PARI) fplusm(n, m)= { local(x, y); for(x=0, n, y=2^(2^x)+m; print1(y", ") ) }
(Magma) [2^(2^n) + 3: n in [0..11]]; // Vincenzo Librandi, Jan 09 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Jul 05 2007
STATUS
approved