The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130682 Numerator of generalized harmonic number H(p-1,p^2) = Sum_{k=1..p-1} 1/k^(p^2) divided by p^4 for prime p>3. 1
 1526339511795367850762323, 187024220802620550798074497168768775337833066860651232788557036897081398718783708709 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS The generalized harmonic number is H(n,m) = Sum_{k=1..n} 1/k^m. The numerator of the generalized harmonic number H(p-1,p) is divisible by p^3 for prime p>3. See A119722(n). The numerator of the generalized harmonic number H(p-1,p^2) is divisible by p^4 for prime p>3. In general, the numerator of the generalized harmonic number H(p-1,p^k) is divisible by p^(k+2) for prime p>3. LINKS Alexander Adamchuk, Jun 29 2007, Table of n, a(n) for n = 3..6 Eric Weisstein's World of Mathematics, Wolstenholme's Theorem Eric Weisstein's World of Mathematics, Harmonic Number FORMULA a(n) = Numerator[ Sum[ 1/k^(Prime[n]^2), {k,1,Prime[n]-1} ] ] / Prime[n]^4 for n>2. EXAMPLE Prime[3] = 5. a(3) = numerator[ 1 + 1/2^25 + 1/3^25 + 1/4^25 ] / 5^4 = 953962194872104906726451875/625 = 1526339511795367850762323. MATHEMATICA Table[ Numerator[ Sum[ 1/k^(Prime[n]^2), {k, 1, Prime[n]-1} ] ] / Prime[n]^4, {n, 3, 10} ] CROSSREFS Cf. A119722 = Numerator of generalized harmonic number H(p-1, p)= Sum[ 1/k^p, {k, 1, p-1}] divided by p^3 for prime p>3. Sequence in context: A328860 A095442 A332605 * A104304 A104322 A030198 Adjacent sequences: A130679 A130680 A130681 * A130683 A130684 A130685 KEYWORD frac,nonn,uned,bref AUTHOR Alexander Adamchuk, Jun 29 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 12:54 EDT 2024. Contains 372913 sequences. (Running on oeis4.)