login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130682
Numerator of generalized harmonic number H(p-1,p^2) = Sum_{k=1..p-1} 1/k^(p^2) divided by p^4 for prime p>3.
1
1526339511795367850762323, 187024220802620550798074497168768775337833066860651232788557036897081398718783708709
OFFSET
3,1
COMMENTS
The generalized harmonic number is H(n,m) = Sum_{k=1..n} 1/k^m. The numerator of the generalized harmonic number H(p-1,p) is divisible by p^3 for prime p>3. See A119722(n). The numerator of the generalized harmonic number H(p-1,p^2) is divisible by p^4 for prime p>3. In general, the numerator of the generalized harmonic number H(p-1,p^k) is divisible by p^(k+2) for prime p>3.
LINKS
Alexander Adamchuk, Jun 29 2007, Table of n, a(n) for n = 3..6
Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
Eric Weisstein's World of Mathematics, Harmonic Number
FORMULA
a(n) = Numerator[ Sum[ 1/k^(Prime[n]^2), {k,1,Prime[n]-1} ] ] / Prime[n]^4 for n>2.
EXAMPLE
Prime[3] = 5.
a(3) = numerator[ 1 + 1/2^25 + 1/3^25 + 1/4^25 ] / 5^4 = 953962194872104906726451875/625 = 1526339511795367850762323.
MATHEMATICA
Table[ Numerator[ Sum[ 1/k^(Prime[n]^2), {k, 1, Prime[n]-1} ] ] / Prime[n]^4, {n, 3, 10} ]
CROSSREFS
Cf. A119722 = Numerator of generalized harmonic number H(p-1, p)= Sum[ 1/k^p, {k, 1, p-1}] divided by p^3 for prime p>3.
Sequence in context: A377422 A095442 A332605 * A104304 A104322 A030198
KEYWORD
frac,nonn,uned,bref
AUTHOR
Alexander Adamchuk, Jun 29 2007
STATUS
approved