login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130681
Sum[ 1/k^(2p-1), {k,1,p-1}] divided by p^3, for prime p>3.
2
41361119, 126941659254799099843, 201945187495172518712395211386399925751676163316330287629003467281801, 534565103485593943310791656810688803242468895931876288948761507813750601446840308490623197040810555162527973
OFFSET
3,1
COMMENTS
The generalized harmonic number is H(n,m) = Sum[ 1/k^m, {k,1,n} ]. The numerator of H(p-1,2p-1) is divisible by p^3 for prime p>3. Also the numerator of H(p-1,p) is divisible by p^3 for prime p>3. See A119722(n).
LINKS
Alexander Adamchuk, Table of n, a(n) for n = 3..10
Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
Eric Weisstein's World of Mathematics, Harmonic Number
FORMULA
a(n) = Numerator[ Sum[ 1/k^(2*Prime[n]-1), {k,1,Prime[n]-1} ] ] / Prime[n]^3 for n>2.
a(n) = A228426(A000040(n))/A000040(n)^3.
EXAMPLE
Prime[3] = 5.
a(3) = numerator[ 1 + 1/2^9 + 1/3^9 + 1/4^9 ] / 5^3 = 5170139875/125 = 41361119.
MATHEMATICA
Table[ Numerator[ Sum[ 1/k^(2*Prime[n]-1), {k, 1, Prime[n]-1} ] ] / Prime[n]^3, {n, 3, 10} ]
PROG
(PARI) a(n)=p=prime(n); numerator(sum(i=1, p-1, 1/i^(2*p-1)))/p^3 \\ Ralf Stephan, Nov 10 2013
CROSSREFS
Cf. A119722.
Sequence in context: A015409 A178204 A334583 * A261658 A274812 A251306
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 29 2007
EXTENSIONS
Edited by Ralf Stephan, Nov 10 2013
STATUS
approved