

A130664


a(1)=1. a(n) = a(n1) + (number of terms from among a(1) through a(n1) which are factorials).


5



1, 2, 4, 6, 9, 12, 15, 18, 21, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Also this is an irregular array where row n contains the n! consecutive multiples of n starting with n!.
For n >= 1, (a(n), A084555(n)) = (1,1), (2,3), (4,5), (6,8), (9,11), (12,14), ... gives the starting and ending offsets of the nth permutation in the sequences like A030298 and A030496. Gives also the fixed points of A220662; we have A220662(a(n)) = a(n).  Antti Karttunen, Dec 18 2012


LINKS

A. Karttunen, Rows 1..7 of irregular table, flattened.


FORMULA

a(n) = A084555(n1) + 1.


EXAMPLE

When interpreted as an irregular table, the rows begin as:
1;
2, 4;
6, 9, 12, 15, 18, 21;


MAPLE

A[1]:= 1:
nextf:= 2!:
m:= 1:
for n from 2 to 100 do
A[n]:= A[n1]+m;
if A[n] = nextf then
m:= m+1;
nextf:= (m+1)!;
fi;
od:
seq(A[i], i=1..100); # Robert Israel, Apr 28 2016


MATHEMATICA

Table[Range[n!, (n + 1)!  1, n], {n, 5}] // Flatten (* Michael De Vlieger, Aug 29 2017 *)


PROG

(Scheme): (define (A130664 n) (+ 1 (A084555( n 1))))


CROSSREFS

Cf. A000142, A084555, A220662.
Sequence in context: A328212 A352191 A256393 * A014011 A064424 A067850
Adjacent sequences: A130661 A130662 A130663 * A130665 A130666 A130667


KEYWORD

easy,nonn


AUTHOR

Leroy Quet, Jun 21 2007


STATUS

approved



