login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130550
Denominators of partial sums for a series for 2*Zeta(2)/3 = (Pi^2)/9.
5
1, 12, 180, 1008, 8400, 118800, 75675600, 302702400, 15437822400, 26665329600, 3226504881600, 5708431713600, 964724959598400, 964724959598400, 46628373047256000, 340112838697632000, 98292610383615648000
OFFSET
1,2
COMMENTS
Numerators are given in A130549.
For the rationals r(n):= 2*sum(1/(j^2*binomial(2*j,j)),j=1..n), n>=1, the van der Poorten reference and a W. Lang link see A130551.
FORMULA
a(n) = denominator(r(n)), n>=1.
Denominator of 2*Sum_{i=1..n} 1/(i^2*C(2*i,i)). - Wolfdieter Lang, Oct 07 2008, corrected by Vaclav Kotesovec, Mar 10 2016
MATHEMATICA
Table[2*Sum[1/(i^2*Binomial[2*i, i]), {i, 1, n}], {n, 1, 20}] // Denominator (* Vaclav Kotesovec, Mar 10 2016 *)
(2Accumulate[Table[1/(n^2 Binomial[2n, n]), {n, 20}]])//Denominator (* Harvey P. Dale, Jan 27 2019 *)
PROG
(PARI) a(n) = denominator(2*sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Jul 13 2007
STATUS
approved