Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jun 14 2017 00:31:00
%S 1,1,1,2,2,1,12,8,3,1,156,80,20,4,1,3540,1516,300,40,5,1,123400,46236,
%T 7816,840,70,6,1,6091988,2054980,309268,28816,1960,112,7,1,402900176,
%U 124679524,17129124,1437476,85656,4032,168,8,1,34289884368,9862677332
%N Triangle T, read by rows, where row n+1 of T equals row n of matrix power T^n added to row n of T (shifted right).
%e Triangle begins:
%e 1;
%e 1, 1;
%e 2, 2, 1;
%e 12, 8, 3, 1;
%e 156, 80, 20, 4, 1;
%e 3540, 1516, 300, 40, 5, 1;
%e 123400, 46236, 7816, 840, 70, 6, 1;
%e 6091988, 2054980, 309268, 28816, 1960, 112, 7, 1;
%e 402900176, 124679524, 17129124, 1437476, 85656, 4032, 168, 8, 1; ...
%e Matrix square T^2 begins:
%e 1;
%e 2, 1;
%e 6, 4, 1;
%e 38, 22, 6, 1;
%e 480, 232, 52, 8, 1; ...
%e [Row 2 of T] = [row 1 of T^2, 0] + [0, row 1 of T]:
%e [2, 2, 1] = [2, 1, 0] + [0, 1, 1].
%e Matrix cube T^3 begins:
%e 1;
%e 3, 1;
%e 12, 6, 1; ...
%e [Row 3 of T] = [row 2 of T^3, 0] + [0, row 2 of T]:
%e [12, 8, 3, 1] = [12, 6, 1, 0] + [0, 2, 2, 1].
%e Matrix 4th power T^4 begins:
%e 1;
%e 4, 1;
%e 20, 8, 1;
%e 156, 68, 12, 1; ...
%e [Row 4 of T] = [row 3 of T^4, 0] + [0, row 3 of T]:
%e [156, 80, 20, 4, 1] = [156, 68, 12, 1, 0] + [0, 12, 8, 3, 1].
%o (PARI) T(n,k)=local(M=Mat(1));if(n<k || k<0,0,if(n==k,1, M=matrix(n+1,n+1,r,c,if(n==k,1,if(r>=c && r<=n,T(r-1,c-1)))); T(n-1,k-1)+(M^n)[n,k+1]))
%Y Columns: A130529, A130530, A130531.
%K nonn,tabl
%O 0,4
%A _Paul D. Hanna_, Jun 02 2007