login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130528
Triangle T, read by rows, where row n+1 of T equals row n of matrix power T^n added to row n of T (shifted right).
3
1, 1, 1, 2, 2, 1, 12, 8, 3, 1, 156, 80, 20, 4, 1, 3540, 1516, 300, 40, 5, 1, 123400, 46236, 7816, 840, 70, 6, 1, 6091988, 2054980, 309268, 28816, 1960, 112, 7, 1, 402900176, 124679524, 17129124, 1437476, 85656, 4032, 168, 8, 1, 34289884368, 9862677332
OFFSET
0,4
EXAMPLE
Triangle begins:
1;
1, 1;
2, 2, 1;
12, 8, 3, 1;
156, 80, 20, 4, 1;
3540, 1516, 300, 40, 5, 1;
123400, 46236, 7816, 840, 70, 6, 1;
6091988, 2054980, 309268, 28816, 1960, 112, 7, 1;
402900176, 124679524, 17129124, 1437476, 85656, 4032, 168, 8, 1; ...
Matrix square T^2 begins:
1;
2, 1;
6, 4, 1;
38, 22, 6, 1;
480, 232, 52, 8, 1; ...
[Row 2 of T] = [row 1 of T^2, 0] + [0, row 1 of T]:
[2, 2, 1] = [2, 1, 0] + [0, 1, 1].
Matrix cube T^3 begins:
1;
3, 1;
12, 6, 1; ...
[Row 3 of T] = [row 2 of T^3, 0] + [0, row 2 of T]:
[12, 8, 3, 1] = [12, 6, 1, 0] + [0, 2, 2, 1].
Matrix 4th power T^4 begins:
1;
4, 1;
20, 8, 1;
156, 68, 12, 1; ...
[Row 4 of T] = [row 3 of T^4, 0] + [0, row 3 of T]:
[156, 80, 20, 4, 1] = [156, 68, 12, 1, 0] + [0, 12, 8, 3, 1].
PROG
(PARI) T(n, k)=local(M=Mat(1)); if(n<k || k<0, 0, if(n==k, 1, M=matrix(n+1, n+1, r, c, if(n==k, 1, if(r>=c && r<=n, T(r-1, c-1)))); T(n-1, k-1)+(M^n)[n, k+1]))
CROSSREFS
Columns: A130529, A130530, A130531.
Sequence in context: A014846 A100942 A132471 * A132986 A019112 A048660
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jun 02 2007
STATUS
approved