login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130286
Strongly-single primes: primes p such that neither previousprime(p) nor nextprime(p) is a twin prime.
2
83, 89, 127, 163, 167, 257, 331, 359, 367, 373, 379, 383, 389, 397, 401, 443, 449, 479, 487, 491, 499, 503, 547, 557, 587, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977
OFFSET
1,1
LINKS
MATHEMATICA
PrimeNext[n_]:=Module[{k}, k=n+1; While[ !PrimeQ[k], k++ ]; k]; PrimePrev[n_]:=Module[{k}, k=n-1; While[ !PrimeQ[k], k-- ]; k]; lst={}; Do[p=Prime[n]; If[ !PrimeQ[p-2]&&!PrimeQ[PrimePrev[p]-2]&&!PrimeQ[p+2]&&!PrimeQ[PrimeNext[p]+2], AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
PROG
(Magma) f:=func<p|NextPrime(p)>; g:=func<p|PreviousPrime(p)>; [p: p in PrimesInInterval(5, 1000)| not IsPrime(f(p)-2) and not IsPrime(g(p)+2) and not IsPrime(f(f(p))-2) and not IsPrime(g(g(p))+2)]; // Marius A. Burtea, Jan 02 2020
CROSSREFS
Cf. A000040 (primes), A001097 (twin primes), A007510 (single primes), A071904 (odd composite numbers).
Sequence in context: A031961 A108751 A256520 * A372042 A226380 A062677
KEYWORD
nonn
AUTHOR
Zak Seidov, Aug 06 2007
EXTENSIONS
Some terms corrected by Vladimir Joseph Stephan Orlovsky, Jul 21 2009
STATUS
approved