login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130276
Number of degree-2n permutations such that number of cycles of size 2k-1 is even (or zero) for every k.
1
1, 2, 16, 416, 20224, 1645312, 196388864, 33279311872, 7427338829824, 2151276556845056, 771086221948223488, 340572557390992900096, 179222835344084459061248, 112158801651454395931426816, 81399358513573250066141937664, 68530340884909785149816189222912
OFFSET
0,2
LINKS
FORMULA
E.g.f. with interleaved zeros: 1/sqrt(1-x^2)*Product_{k>=1} cosh(x^(2*k-1)/(2*k-1)). - Geoffrey Critzer, Jan 02 2011
EXAMPLE
a(2)=16 because there are 8 permutations that do not qualify: (1)(234), (1)(243), (123)(4), (124)(3), (132)(4), (134)(2), (142)(3) and (143)(2).
MAPLE
g:=(product(cosh(x^(2*k-1)/(2*k-1)), k=1..30))/sqrt(1-x^2): gser:=series(g, x= 0, 30): seq(factorial(2*n)*coeff(gser, x, 2*n), n=0..13); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=0 or irem(j, 2)=0, multinomial(n,
n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 09 2015
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 || Mod[j, 2] == 0, multinomial[n, Join[{n - i*j}, Array[i &, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
PROG
(PARI) N=31; x='x+O('x^N);
v0=Vec(serlaplace(1/sqrt(1-x^2)*prod(k=1, N, cosh(x^(2*k-1)/(2*k-1)))));
vector(#v0\2, n, v0[2*n-1]) \\ Joerg Arndt, Jan 03 2011
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 06 2007
EXTENSIONS
More terms from Emeric Deutsch, Aug 24 2007
STATUS
approved