login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A130212
T(k, n) = sum_(1 <= j <= k) [j | k] j mu(k / j) floor(n / k), triangle read by rows.
4
1, 2, 1, 3, 1, 2, 4, 2, 2, 2, 5, 2, 2, 2, 4, 6, 3, 4, 2, 4, 2, 7, 3, 4, 2, 4, 2, 6, 8, 4, 4, 4, 4, 2, 6, 4, 9, 4, 6, 4, 4, 2, 6, 4, 6, 10, 5, 6, 4, 8, 2, 6, 4, 6, 4, 11, 5, 6, 4, 8, 2, 6, 4, 6, 4, 10, 12, 6, 8, 6, 8, 4, 6, 4, 6, 4, 10, 4, 13, 6, 8, 6, 8, 4, 6, 4, 6, 4, 10, 4, 12
OFFSET
1,2
FORMULA
A000012 * A054522 as infinite lower triangular matrices (previous name).
T(n,n) = A000010(n).
EXAMPLE
First few rows of the triangle are:
1;
2, 1;
3, 1, 2;
4, 2, 2, 2;
5, 2, 2, 2, 4;
6, 3, 4, 2, 4, 2;
7, 3, 4, 2, 4, 2, 6;
8, 4, 4, 4, 4, 2, 6, 4;
9, 4, 6, 4, 4, 2, 6, 4, 6;
10, 5, 6, 4, 8, 2, 6, 4, 6, 4;
...
MAPLE
with(numtheory): A130212 := (n, k) -> add(j*mobius(k / j)*iquo(n, k), j = divisors(k)); # Peter Luschny, Oct 28 2010
MATHEMATICA
A[n_, k_] := Sum[j MoebiusMu[k/j] Floor[n/k], {j, Divisors[k]}];
Table[A[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 14 2019 *)
CROSSREFS
Cf. A000010, A130211 (product with swapped matrices), A054522, A000217 (row sums).
Sequence in context: A056951 A130517 A316715 * A133737 A213361 A212121
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, May 17 2007
EXTENSIONS
Name replaced by new formula by Peter Luschny, Oct 28 2010
T(6,1) corrected by R. J. Mathar, Aug 06 2016
STATUS
approved