Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 27 2023 09:23:56
%S 1,1,1,1,0,2,1,1,0,3,1,0,0,0,6,1,1,2,0,0,7,1,0,0,0,0,0,14,1,1,0,3,0,0,
%T 0,17,1,0,2,0,0,0,0,0,27,1,1,0,0,6,0,0,0,0,34,1,0,0,0,0,0,0,0,0,0,55,
%U 1,1,2,3,0,7,0,0,0,0,0,63
%N Triangle read by rows: A051731 * A000837 as a diagonalized matrix.
%C Right border = A000837 (offset 1).
%C Row sums = partition numbers A000041 starting (1, 2, 3, 5, 7, ...).
%F A051731 * A000837 (starting at offset 1) as a diagonalized matrix M, where M = T(n,k) = A000837(n) * 0^(n-k), 1<=k<=n; i.e., (1; 0,1; 0,0,2; 0,0,0,3; 0,0,0,0,6;...).
%F A051731 = inverse Moebius transform.
%e First few rows of the triangle:
%e 1;
%e 1, 1;
%e 1, 0, 2;
%e 1, 1, 0, 3;
%e 1, 0, 0, 0, 6;
%e 1, 1, 2, 0, 0, 7;
%e 1, 0, 0, 0, 0, 0, 14;
%e 1, 1, 0, 3, 0, 0, 0, 17;
%e ...
%t rows = 12; A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; A000837diag = DiagonalMatrix[Array[A000837, rows]]; A051731 = Table[ If[Mod[n, k] == 0, 1, 0], {n, 1, rows}, {k, 1, rows}]; A130162 = A051731.A000837diag; Table[ A130162[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 03 2013 *)
%Y Cf. A000041, A000837, A051731.
%K nonn,tabl
%O 1,6
%A _Gary W. Adamson_, May 13 2007
%E More terms from _Jean-François Alcover_, Oct 03 2013
%E Offset changed to 1 by _Georg Fischer_, Jun 27 2023