Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Nov 02 2020 07:56:23
%S 1,2,4,8,248,731,1333,3503,17608,35003,50963,62611,82603,90148,94643,
%T 106978,201295,231311,253828,335723,364808,374573,425323,490915,
%U 592595,628015,725203,984343,1031803,1112023,1136195,1376903,1411343,1430003,1642798,1926088
%N Terms in A015922 not divisible by 3.
%C Intersection of A015922 and A001651. - _Michel Marcus_, Oct 13 2013
%H Alois P. Heinz, <a href="/A130133/b130133.txt">Table of n, a(n) for n = 1..100</a>
%p a:= proc(n) option remember; local k;
%p for k from 1+`if`(n=1, 0, a(n-1)) while
%p irem(k, 3)=0 or 2&^k mod k <> 8 mod k do od; k
%p end:
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jun 04 2014
%t {1, 2, 4, 8} ~Join~ Select[Range[2 10^6], PowerMod[2, #, #] == 8 && !Divisible[#, 3]&] (* _Jean-François Alcover_, Nov 02 2020 *)
%o (PARI) isok(n) = (n % 3) && (Mod(2^n, n) == Mod(8, n)); \\ _Michel Marcus_, Oct 13 2013
%Y Cf. A001651, A015922, A130134.
%Y Intersection with A033553 gives A277344.
%K nonn
%O 1,2
%A _Zak Seidov_, May 12 2007
%E a(17)-a(28) from _Michel Marcus_, Oct 13 2013
%E a(29)-a(36) from _Alois P. Heinz_, Jun 04 2014