Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Feb 20 2022 01:40:45
%S 1,0,-1,-1,-3,0,-5,-2,-3,0,-9,1,-11,0,3,-3,-15,0,-17,3,5,0,-21,2,-7,0,
%T -5,5,-27,0,-29,-4,9,0,15,3,-35,0,11,6,-39,0,-41,9,9,0,-45,3,-11,0,15,
%U 11,-51,0,27,10,17,0,-57,-3,-59,0,15,-5,33,0,-65,15,21
%N Inverse Moebius transform of A023900.
%C Multiplicative because A023900 is. - _Andrew Howroyd_, Aug 03 2018
%H Amiram Eldar, <a href="/A130054/b130054.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Andrew Howroyd)
%F A126988 * A130054 = d(n), A000005: (1, 2, 2, 3, 2, 4, 2, 4, 3, 4, ...).
%F a(n) = Sum_{d|n} A023900(n/d). - _Andrew Howroyd_, Aug 03 2018
%F a(n) = Sum_{d|n} d*mu(d)*tau(n/d). - _Ridouane Oudra_, Nov 17 2019
%F From _Werner Schulte_, Sep 06 2020: (Start)
%F Multiplicative with a(p^e) = 1 - (p-1) * e for prime p and e >= 0.
%F Dirichlet g.f.: (zeta(s))^2 / zeta(s-1).
%F Dirichlet convolution with A062570 equals A001511.
%F Dirichlet convolution with A018804 equals A000203.
%F Dirichlet inverse of A007431. (End)
%F a(n) = 1 - Sum_{k=1..n-1} a(gcd(n,k)). - _Ilya Gutkovskiy_, Nov 06 2020
%p with(numtheory): seq(add(d*mobius(d)*tau(n/d), d in divisors(n)), n=1..60); # _Ridouane Oudra_, Nov 17 2019
%t b[n_] := Sum[d MoebiusMu[d], {d, Divisors[n]}];
%t a[n_] := Sum[b[n/d], {d, Divisors[n]}];
%t a /@ Range[1, 100] (* _Jean-François Alcover_, Sep 20 2019, from PARI *)
%t f[p_, e_] := 1-(p-1)*e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 23 2020 *)
%o (PARI) \\ here b(n) is A023900
%o b(n)={sumdivmult(n, d, d*moebius(d))}
%o a(n)={sumdiv(n, d, b(n/d))} \\ _Andrew Howroyd_, Aug 03 2018
%o (Magma) [&+[d*MoebiusMu(d)*NumberOfDivisors(n div d):d in Divisors(n)]:n in [1..70]]; // _Marius A. Burtea_, Nov 17 2019
%Y Row sums of A129691.
%Y Cf. A126988, A000005, A023900, A062570, A001511, A018804, A000203, A007431.
%K sign,mult,easy
%O 1,5
%A _Gary W. Adamson_, May 04 2007
%E Name changed and terms a(11) and beyond from _Andrew Howroyd_, Aug 03 2018