login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Difference between successive primes cubed: a(n) = prime(n+1)^3 - prime(n)^3.
7

%I #20 Sep 08 2022 08:45:30

%S 19,98,218,988,866,2716,1946,5308,12222,5402,20862,18268,10586,24316,

%T 45054,56502,21602,73782,57148,31106,104022,78748,133182,207704,

%U 117628,62426,132316,69986,147868,605486,199708,323262,114266,622330,135002

%N Difference between successive primes cubed: a(n) = prime(n+1)^3 - prime(n)^3.

%H Harvey P. Dale, <a href="/A129701/b129701.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A030078(n+1) - A030078(n). - _Michel Marcus_, Sep 04 2013

%e a(3) because the fourth prime is 7, cubed 343, the third prime is 5, cubed 125, 343-125=218.

%p last:=8;for i from 3 to 30 do > while isprime(i)=false do > i:=i + 1; > end do; > r:= i^3 - last; > last:=i^3; > end do;

%t Table[Prime[n+1]^3 - Prime[n]^3, {n, 1, 40}] (* _Stefan Steinerberger_, Jun 05 2007 *)

%t Last[#]-First[#]&/@(Partition[Prime[Range[40]],2,1]^3) (* _Harvey P. Dale_, Oct 13 2012 *)

%o (PARI) {a(n) = prime(n+1)^3 - prime(n)^3}; \\ _G. C. Greubel_, May 19 2019

%o (Magma) [NthPrime(n+1)^3 - NthPrime(n)^3: n in [1..40]]; // _G. C. Greubel_, May 19 2019

%o (Sage) [nth_prime(n+1)^3 - nth_prime(n)^3 for n in (1..40)] # _G. C. Greubel_, May 19 2019

%Y Cf. A030078 (cubes of primes).

%K nonn

%O 1,1

%A _Ben Paul Thurston_, Jun 01 2007

%E More terms from _Stefan Steinerberger_, Jun 05 2007