login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129701
Difference between successive primes cubed: a(n) = prime(n+1)^3 - prime(n)^3.
7
19, 98, 218, 988, 866, 2716, 1946, 5308, 12222, 5402, 20862, 18268, 10586, 24316, 45054, 56502, 21602, 73782, 57148, 31106, 104022, 78748, 133182, 207704, 117628, 62426, 132316, 69986, 147868, 605486, 199708, 323262, 114266, 622330, 135002
OFFSET
1,1
LINKS
FORMULA
a(n) = A030078(n+1) - A030078(n). - Michel Marcus, Sep 04 2013
EXAMPLE
a(3) because the fourth prime is 7, cubed 343, the third prime is 5, cubed 125, 343-125=218.
MAPLE
last:=8; for i from 3 to 30 do > while isprime(i)=false do > i:=i + 1; > end do; > r:= i^3 - last; > last:=i^3; > end do;
MATHEMATICA
Table[Prime[n+1]^3 - Prime[n]^3, {n, 1, 40}] (* Stefan Steinerberger, Jun 05 2007 *)
Last[#]-First[#]&/@(Partition[Prime[Range[40]], 2, 1]^3) (* Harvey P. Dale, Oct 13 2012 *)
PROG
(PARI) {a(n) = prime(n+1)^3 - prime(n)^3}; \\ G. C. Greubel, May 19 2019
(Magma) [NthPrime(n+1)^3 - NthPrime(n)^3: n in [1..40]]; // G. C. Greubel, May 19 2019
(Sage) [nth_prime(n+1)^3 - nth_prime(n)^3 for n in (1..40)] # G. C. Greubel, May 19 2019
CROSSREFS
Cf. A030078 (cubes of primes).
Sequence in context: A069593 A299733 A086120 * A221746 A241236 A044270
KEYWORD
nonn
AUTHOR
Ben Paul Thurston, Jun 01 2007
EXTENSIONS
More terms from Stefan Steinerberger, Jun 05 2007
STATUS
approved