Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 25 2022 16:24:14
%S 2,3,7,11,13,17,19,31,37,43,83,137,191,197,223,311,347,359,367,389,
%T 449,491,499,503,521,601,647,683,733,751,809,857,881,887,919,953,1019,
%U 1033,1061,1087,1193,1223,1229,1277,1291,1301,1367,1459
%N The sum of the decimal digits of all primes up to and including the primes listed equals a prime.
%C Up to 50000 there are only five groups of twins: (11,13) - (17,19) - (2141,2143) - (3939,3931) - (48677,48679). - _Carmine Suriano_, Jul 22 2010, corrected by _Robert Israel_, Feb 25 2022
%H Robert Israel, <a href="/A129633/b129633.txt">Table of n, a(n) for n = 1..10000</a>
%e For 17, 2 + 3 + 5 + 7 + 1+1 + 1+3 + 1+7 = 31, which is prime.
%p S:= 0: R:= NULL: count:= 0: p:= 1:
%p while count < 100 do
%p p:= nextprime(p);
%p S:= S + convert(convert(p,base,10),`+`);
%p if isprime(S) then
%p count:= count+1; R:= R,p;
%p fi
%p od:
%p R; # _Robert Israel_, Feb 25 2022
%t a = {}; su = 0; For[n = 1, n < 300, n++, su = su + Plus@@IntegerDigits[Prime[n]]; If[PrimeQ[su], AppendTo[a, Prime[n]]]]; a (* _Stefan Steinerberger_, Jun 08 2007 *)
%K nonn,base
%O 1,1
%A _J. M. Bergot_, May 31 2007
%E More terms from _Stefan Steinerberger_, Jun 08 2007