login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129633
The sum of the decimal digits of all primes up to and including the primes listed equals a prime.
1
2, 3, 7, 11, 13, 17, 19, 31, 37, 43, 83, 137, 191, 197, 223, 311, 347, 359, 367, 389, 449, 491, 499, 503, 521, 601, 647, 683, 733, 751, 809, 857, 881, 887, 919, 953, 1019, 1033, 1061, 1087, 1193, 1223, 1229, 1277, 1291, 1301, 1367, 1459
OFFSET
1,1
COMMENTS
Up to 50000 there are only five groups of twins: (11,13) - (17,19) - (2141,2143) - (3939,3931) - (48677,48679). - Carmine Suriano, Jul 22 2010, corrected by Robert Israel, Feb 25 2022
LINKS
EXAMPLE
For 17, 2 + 3 + 5 + 7 + 1+1 + 1+3 + 1+7 = 31, which is prime.
MAPLE
S:= 0: R:= NULL: count:= 0: p:= 1:
while count < 100 do
p:= nextprime(p);
S:= S + convert(convert(p, base, 10), `+`);
if isprime(S) then
count:= count+1; R:= R, p;
fi
od:
R; # Robert Israel, Feb 25 2022
MATHEMATICA
a = {}; su = 0; For[n = 1, n < 300, n++, su = su + Plus@@IntegerDigits[Prime[n]]; If[PrimeQ[su], AppendTo[a, Prime[n]]]]; a (* Stefan Steinerberger, Jun 08 2007 *)
CROSSREFS
Sequence in context: A265760 A071200 A038921 * A020622 A045320 A045321
KEYWORD
nonn,base
AUTHOR
J. M. Bergot, May 31 2007
EXTENSIONS
More terms from Stefan Steinerberger, Jun 08 2007
STATUS
approved