The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129526 Number of n-bead two-color bracelets with 00 prohibited. 4
 2, 2, 3, 3, 5, 5, 8, 9, 14, 16, 26, 31, 49, 64, 99, 133, 209, 291, 455, 657, 1022, 1510, 2359, 3545, 5536, 8442, 13201, 20319, 31836, 49353, 77436, 120711, 189674, 296854, 467160, 733363, 1155647, 1818594, 2869378, 4524081, 7146483 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Bracelets can be turned over; turning the seventh example gives a different necklace but the same bracelet. a(n) is also the number of inequivalent compositions of n into parts 1 and 2 where two compositions are considered equivalent if one can be obtained from the other by a cyclic rotation and/or reversing of the summands. a(7) = 5 because we have: 2+2+2+1, 2+2+1+1+1, 2+1+2+1+1, 2+1+1+1+1+1, 1+1+1+1+1+1+1. - Geoffrey Critzer, Feb 01 2014 a(n) is also the average of sequence A000358(n) and Fib(floor(n/2)+2). The expression (1+x)*(1+x^2)/(1-x^2-x^4) (due to H. Kociemba) is the g.f. of Fib(floor(n/2)+2). Even though the offset of a(n) is set at n = 2, the formula is true even for n=1 because a(1) = 1 = (1+1)/2 (since the sequence 1 on a circle does not allow the pattern 00 when it is allowed to wrap around itself on the circle, while the sequence 0 does). - Petros Hadjicostas, Jan 04 2017 LINKS Table of n, a(n) for n=2..42. Ali Reza Ashrafi, Jernej Azarija, Khadijeh Fathalikhani, Sandi Klavžar, Marko Petkovšek, Vertex and edge orbits of Fibonacci and Lucas cubes, arXiv:1407.4962 [math.CO], 2014. See Table 4. A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, et al., Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014. M. Assis, J. L. Jacobsen, I. Jensen, J.-M. Maillard and B. M. McCoy, Hard hexagon partition function for complex fugacity, arXiv preprint arXiv:1306.6389 [math-ph], 2013. M. Assis, J. L. Jacobsen, I. Jensen, J.-M. Maillard and B. M. McCoy, Integrability vs non-integrability: Hard hexagons and hard squares compared, arXiv preprint 1406.5566 [math-ph], 2014. C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papić, Quantum scarred eigenstates in a Rydberg atom chain: entanglement, breakdown of thermalization, and stability to perturbations, arXiv:1806.10933 [cond-mat.quant-gas], 2018. FORMULA G.f.: [Sum_{n>=1} phi(n)*log(1- x^n*(1+x^n))/n + ((1+x)*(1+x^2))/(-1+x^2+x^4)]/(-2). - Herbert Kociemba, Dec 04 2016 a(n) = [A000358(n)+Fib(floor(n/2)+2)]/2. - Petros Hadjicostas, Jan 04 2017 a(n) = [Fib(floor(n/2)+2)+(1/n) * sum_{d divides n} phi(n/d)*(Fib(d-1)+Fib(d+1))]/2. - Petros Hadjicostas, Jan 04 2017 (with help from Lingyun Zhang). EXAMPLE a(9) = 9 because of 111111111, 011111111, 010111111, 011011111, 011101111, 010101111, 010110111, 011011011, 010101011. MATHEMATICA nn=48; Drop[Map[Total, Transpose[Map[PadRight[#, nn]&, Table[CoefficientList[Series[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->x^i+x^(2i), {i, 1, n}], {x, 0, nn}], x], {n, 0, nn}]]]], 2] (* Geoffrey Critzer, Feb 01 2014 *) mx:=50; CoefficientList[Series[(Sum[(EulerPhi[n] Log[1- x^n (1+x^n)])/n, {n, 1, mx}]+((1+x) (1+x^2))/(-1+x^2+x^4))/(-2), {x, 0, mx}], x] (* Herbert Kociemba, Dec 04 2016 *) CROSSREFS Cf. A000358. Sequence in context: A103609 A237800 A232697 * A246998 A000358 A032244 Adjacent sequences: A129523 A129524 A129525 * A129527 A129528 A129529 KEYWORD nonn AUTHOR Colin Mallows, May 29 2007 EXTENSIONS a(10) corrected and added more terms (from a(14) inclusive) by Washington Bomfim, Aug 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 1 16:12 EST 2024. Contains 370442 sequences. (Running on oeis4.)