login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

An analog of Pascal's triangle based on A129454. T(n, k) = A129454(n+1)/(A129454(n-k+1)*A129454(k+1)).
4

%I #9 Feb 08 2024 01:45:20

%S 1,1,1,1,2,1,1,3,3,1,1,256,384,256,1,1,5,640,640,5,1,1,1146617856,

%T 2866544640,244611809280,2866544640,1146617856,1,1,7,4013162496,

%U 6688604160,6688604160,4013162496,7,1,1,35184372088832,123145302310912,47066867504069920948224,919274755938865643520,47066867504069920948224,123145302310912,35184372088832,1

%N An analog of Pascal's triangle based on A129454. T(n, k) = A129454(n+1)/(A129454(n-k+1)*A129454(k+1)).

%C It appears that the T(n,k) are always integers. This would follow from the conjectured prime factorization given in A129454. Calculation suggests that the binomial coefficients C(n,k) divide T(n,k) and that T(n,k)/C(n,k) are perfect sixth powers.

%H G. C. Greubel, <a href="/A129455/b129455.txt">Rows n = 0..25 of the triangle, flattened</a>

%F T(n, k) = Product_{h=1..n} Product_{i=1..n} Product_{j=1..n} gcd(h,i,j)/( (Product_{h=1..n-k} Product_{i=1..n-k} Product_{j=1..n-k} gcd(h,i,j))*(Product_{h=1..k} Product_{i=1..k} Product_{j=1..k} gcd(h,i,j)) ).

%F T(n, n-k) = T(n, k). - _G. C. Greubel_, Feb 07 2024

%e Triangle starts:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 3, 3, 1;

%e 1, 256, 384, 256, 1;

%e 1, 5, 640, 640, 5, 1;

%t A129454[n_]:= Product[GCD[j,k,m], {j,n-1}, {k,n-1}, {m,n-1}];

%t A129455[n_, k_]:= A129454[n+1]/(A129454[k+1]*A129454[n-k+1]);

%t Table[A129455[n,k], {n,0,9}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 07 2024 *)

%o (Magma)

%o A129454:= func< n | n le 1 select 1 else (&*[(&*[(&*[GCD(GCD(j,k),m): k in [1..n-1]]): j in [1..n-1]]): m in [1..n-1]]) >;

%o A129455:= func< n,k | A129454(n+1)/(A129454(n-k+1)*A129454(k+1)) >;

%o [A129455(n,k): k in [0..n], n in [0..9]]; // _G. C. Greubel_, Feb 07 2024

%o (SageMath)

%o def A129454(n): return product(product(product(gcd(gcd(j,k),m) for k in range(1,n)) for j in range(1,n)) for m in range(1,n))

%o def A129455(n,k): return A129454(n+1)/(A129454(n-k+1)*A129454(k+1))

%o flatten([[A129455(n,k) for k in range(n+1)] for n in range(10)]) # _G. C. Greubel_, Feb 07 2024

%Y Cf. A092287, A129453, A129454.

%K nonn,tabl

%O 0,5

%A _Peter Bala_, Apr 16 2007