login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129226
Residues of the Lucas - Lehmer primality test for M(31) = 2147483647.
8
4, 14, 194, 37634, 1416317954, 669670838, 1937259419, 425413602, 842014276, 12692426, 2044502122, 1119438707, 1190075270, 1450757861, 877666528, 630853853, 940321271, 512995887, 692931217, 1883625615, 1992425718
OFFSET
0,1
COMMENTS
Since a(29) = 0, M(31) = 2147483647 is prime. Mersenne numbers are only prime if a(p-2) = 0.
LINKS
Eric Weisstein's World of Mathematics, Lucas Lehmer Test.
FORMULA
a(0) = 4, a(n) = a(n-1)^2 mod 2^p-1. Last term: a(p-2).
EXAMPLE
a(29) = 65536^2 - 2 mod 2147483647 = 0.
PROG
(Python)
p = 31; Mp = 2**p - 1
from itertools import accumulate
def f(anm1, _): return (anm1**2 - 2) % Mp
print(list(accumulate([4]*30, f))) # Michael S. Branicky, Apr 14 2021
KEYWORD
fini,nonn
AUTHOR
Sergio Pimentel, Apr 04 2007
STATUS
approved