login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Third column (m=2) of triangle A129062 and second column of triangle A079641.
3

%I #17 Oct 22 2019 16:27:11

%S 1,6,36,250,2040,19334,209580,2562354,34915680,524986462,8636859924,

%T 154357103498,2978418173640,61718786864310,1367098836863868,

%U 32236969655283682,806313056758966320,21322699350055313678,594440128269066768612,17424632249851351374906

%N Third column (m=2) of triangle A129062 and second column of triangle A079641.

%H Seiichi Manyama, <a href="/A129063/b129063.txt">Table of n, a(n) for n = 0..422</a>

%F a(n) = A129062(n+2,2), n>=0.

%F a(n) = A079641(n+1,1), n>=0.

%F E.g.f.: (d^2/dx^2)((-log(2-exp(x)))^2)/2.

%F E.g.f.: d/dx (f(x) * Integral f(x) dx), where f(x) = exp(x)/(2-exp(x)), cf. A000629. - _Seiichi Manyama_, Oct 22 2019

%F a(n) ~ n! * n * log(n) / (log(2))^(n+2) * (1 + (gamma - log(2) - log(log(2))) / log(n)), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Oct 22 2019

%o (PARI) N=20; x='x+O('x^N); f=exp(x)/(2-exp(x)); Vec(serlaplace(deriv(f*intformal(f)))) \\ _Seiichi Manyama_, Oct 22 2019

%Y A000629 gives second, resp. first column of A129062, resp. A079641.

%Y Cf. A180875.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, May 04 2007