OFFSET
0,3
COMMENTS
The 15th convergent breaks down at number 16 so a 24-digit ratio gives 24 digits accuracy. The 16th convergent breaks down at the 97th number. It is amazing that a 24-digit ratio gives 186 digits of accuracy in the expansion!
FORMULA
The natural numbers 0,1,2,3,... are concatenated and then preceded by a decimal point to create the fraction N = .0123456789101112131415... . This number is then evaluated with n=0, m=steps to iterate, x = N, a(0)=floor(N) using the loop: do a(n)=floor(x) x=1/(x-a(n)) n=n+1 loop until n=m.
EXAMPLE
The 15th convergent 36686725011/2971624750499 = 0.01234567891011121314151610314942472616...
The 16th convergent 60499999499/4900500000000 = 0.0123456789101112131415161718192021222324252627282930313233343536373839404142\
434445464748495051525354555657585960616263646566676869707172737475767778798081\
8283848586878889909192939495969799000...
PROG
(PARI) cfrac2(m, f) = { default(realprecision, 1000); cf = vector(m+10); cf = contfrac(f); for(m1=0, m-1, r=cf[m1+1]; forstep(n=m1, 1, -1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); print1(numer", "); ) }
CROSSREFS
KEYWORD
frac,nonn,base
AUTHOR
Cino Hilliard, Apr 15 2007
EXTENSIONS
Edited by Charles R Greathouse IV, Apr 25 2010
STATUS
approved