Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 08 2021 02:31:57
%S 7,2474315503,53305712401979540402437,
%T 5597916593064896381208777124641713285719656398067086247546781015747740847,
%U 192635872080422175485338764164035657976855166649911323825254242037669356649787653784405726270977624462974729613783
%N Numerator of alternating generalized harmonic number H'(p-1,2p) = Sum_{k=1..p-1} (-1)^(k+1)/k^(2*p) divided by p^2 for prime p > 2.
%C Alternating generalized harmonic number is H'(n,m) = Sum_{k=1..n} (-1)^(k+1)*1/k^m. Numerator of H'(p-1,2n) is divisible by p for all integers n > 0 and primes p > 2. Numerator of H'(p-1,2p) is divisible by p^2 for prime p > 2.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WolstenholmesTheorem.html">Wolstenholme's Theorem</a>
%F a(n) = numerator(Sum_{k=1..prime(n)-1} (-1)^(k+1)/k^(2*prime(n))) / prime(n)^2 for n > 1.
%e prime(2) = 3; a(2) = numerator(1 - 1/2^6) / 3^2 = 63/9 = 7.
%e prime(3) = 5; a(3) = numerator(1 - 1/2^10 + 1/3^10 - 1/4^10) / 5^2 = 61857887575/25 = 2474315503.
%t Table[ Numerator[ Sum[(-1)^(k+1)*1/k^(2*Prime[n]), {k,1,Prime[n]-1} ] ] / Prime[n]^2, {n,2,10} ]
%Y Cf. A119722 (numerator of generalized harmonic number H(p-1, p) = Sum_{k=1..p-1} 1/k^p divided by p^3 for prime p>3).
%Y Cf. A001008, A119682, A120296.
%K nonn
%O 2,1
%A _Alexander Adamchuk_, Apr 10 2007