login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128820
Numerator of alternating generalized harmonic number H'(p-1,2p) = Sum_{k=1..p-1} (-1)^(k+1)/k^(2*p) divided by p^2 for prime p > 2.
0
7, 2474315503, 53305712401979540402437, 5597916593064896381208777124641713285719656398067086247546781015747740847, 192635872080422175485338764164035657976855166649911323825254242037669356649787653784405726270977624462974729613783
OFFSET
2,1
COMMENTS
Alternating generalized harmonic number is H'(n,m) = Sum_{k=1..n} (-1)^(k+1)*1/k^m. Numerator of H'(p-1,2n) is divisible by p for all integers n > 0 and primes p > 2. Numerator of H'(p-1,2p) is divisible by p^2 for prime p > 2.
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number
Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
FORMULA
a(n) = numerator(Sum_{k=1..prime(n)-1} (-1)^(k+1)/k^(2*prime(n))) / prime(n)^2 for n > 1.
EXAMPLE
prime(2) = 3; a(2) = numerator(1 - 1/2^6) / 3^2 = 63/9 = 7.
prime(3) = 5; a(3) = numerator(1 - 1/2^10 + 1/3^10 - 1/4^10) / 5^2 = 61857887575/25 = 2474315503.
MATHEMATICA
Table[ Numerator[ Sum[(-1)^(k+1)*1/k^(2*Prime[n]), {k, 1, Prime[n]-1} ] ] / Prime[n]^2, {n, 2, 10} ]
CROSSREFS
Cf. A119722 (numerator of generalized harmonic number H(p-1, p) = Sum_{k=1..p-1} 1/k^p divided by p^3 for prime p>3).
Sequence in context: A075984 A109300 A124272 * A067485 A180225 A353294
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Apr 10 2007
STATUS
approved