OFFSET
0,2
COMMENTS
In general, row r > 0 of A128570 is asymptotic to 2^(2*r) * n^r * A128318(n) / (3^r * r!). - Vaclav Kotesovec, Mar 19 2016
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..350
FORMULA
G.f.: A(x) = 1 + 7x*R(x,7)^2, where R(x,7) = 1 + 8*x*R(x,8)^2, R(x,8) = 1 + 9*x*R(x,9)^2, ..., R(x,n) = 1 + (n+1)*x*R(x,n+1)^2, ... and R(x,n) is the g.f. of row n of table A128570.
a(n) ~ 256*n^6*A128318(n)/32805. - Vaclav Kotesovec, Mar 19 2016
PROG
(PARI) {a(n)=local(A=1+(n+7)*x); for(j=0, n, A=1+(n+7-j)*x*A^2 +x*O(x^n)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 11 2007
STATUS
approved