|
|
|
|
1, 7, 112, 2464, 65520, 1991808, 67189248, 2469837888, 97765355520, 4132860197760, 185458263419520, 8794132843507200, 439083652465543680, 23017956568726049280, 1263929372436815078400, 72550400791147384412160
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
In general, row r > 0 of A128570 is asymptotic to 2^(2*r) * n^r * A128318(n) / (3^r * r!). - Vaclav Kotesovec, Mar 19 2016
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..350
|
|
FORMULA
|
G.f.: A(x) = 1 + 7x*R(x,7)^2, where R(x,7) = 1 + 8*x*R(x,8)^2, R(x,8) = 1 + 9*x*R(x,9)^2, ..., R(x,n) = 1 + (n+1)*x*R(x,n+1)^2, ... and R(x,n) is the g.f. of row n of table A128570.
a(n) ~ 256*n^6*A128318(n)/32805. - Vaclav Kotesovec, Mar 19 2016
|
|
PROG
|
(PARI) {a(n)=local(A=1+(n+7)*x); for(j=0, n, A=1+(n+7-j)*x*A^2 +x*O(x^n)); polcoeff(A, n)}
|
|
CROSSREFS
|
Cf. A128570 (triangle), other rows: A128318, A128571, A128572, A128573, A128574, A128575; A128577 (square of row 0), A128578 (main diagonal), A128579 (antidiagonal sums).
Sequence in context: A217223 A067404 A129030 * A147631 A010795 A293456
Adjacent sequences: A128573 A128574 A128575 * A128577 A128578 A128579
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Mar 11 2007
|
|
STATUS
|
approved
|
|
|
|