login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128438
a(n) = floor((denominator of H(n))/n), where H(n) = Sum_{k=1..n} 1/k, the n-th harmonic number.
3
1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 226893, 4084080, 775975, 246341, 235144, 5173168, 14872858, 356948592, 343219800, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800
OFFSET
1,3
COMMENTS
This is very similar to A027611, which is a different sequence. - N. J. A. Sloane, Nov 21 2008
Indices where a(n) differs from A027611 are terms of A074791. - Gary Detlefs, Sep 03 2011
LINKS
EXAMPLE
The sequence denominator(H(n))/n begins 1, 1, 2, 3, 12, 10/3, 20, 35, 280, 252, 2520, 2310, ..., so the present sequence begins 1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, ...
MAPLE
H:=n->sum(1/k, k=1..n): a:=n->floor(denom(H(n))/n): seq(a(n), n=1..34); # Emeric Deutsch, Mar 25 2007
MATHEMATICA
seq = {}; s = 0; Do[s += 1/n; AppendTo[seq, Floor[Denominator[s]/n]], {n, 1, 30}]; seq (* Amiram Eldar, Sep 18 2021 *)
Table[Floor[Denominator[HarmonicNumber[n]]/n], {n, 40}] (* Harvey P. Dale, Nov 24 2023 *)
PROG
(Python)
from sympy import harmonic
def A128438(n): return harmonic(n).q//n # Chai Wah Wu, Sep 27 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Mar 03 2007
EXTENSIONS
More terms from Emeric Deutsch, Mar 25 2007
STATUS
approved