The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128419 Expansion of 8/(sqrt(1-8*x)*(sqrt(1-8*x)+4*x+7)). 2
 1, 4, 25, 168, 1181, 8524, 62609, 465616, 3495013, 26423604, 200920985, 1534936440, 11771854381, 90578698396, 698921030945, 5406132020128, 41905249405301, 325434733291396, 2531523208218665, 19721766268370248, 153847524455503421, 1201601094053039596, 9395224234956935345 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Diagonal sums of number triangle A128417. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 FORMULA a(n) = Sum_{k=0..floor(n/2)} 2^(n-2k)*C(2n-2k,n-2k). D-finite with recurrence: 3*n*(15*n-22)*a(n) = 4*(75*n^2-155*n+63)*a(n-1) + (465*n^2-922*n+336)*a(n-2) + 4*(2*n-3)*(15*n-7)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012 a(n) ~ 2^(3*n+4)/(15*sqrt(Pi*n)) . - Vaclav Kotesovec, Oct 20 2012 MATHEMATICA CoefficientList[Series[8/(Sqrt[1-8x](Sqrt[1-8x]+4x+7)), {x, 0, 30}], x] (* Harvey P. Dale, Apr 24 2012 *) Table[Sum[2^(n-2*k)*Binomial[2*n-2*k, n-2*k], {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Feb 09 2017 *) PROG (PARI) x='x+O('x^50); Vec(8/(sqrt(1-8*x)*(sqrt(1-8*x)+4*x+7))) \\ G. C. Greubel, Feb 09 2017 CROSSREFS Sequence in context: A184755 A357223 A074422 * A226945 A225137 A229255 Adjacent sequences: A128416 A128417 A128418 * A128420 A128421 A128422 KEYWORD easy,nonn AUTHOR Paul Barry, Mar 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 11:41 EST 2023. Contains 367656 sequences. (Running on oeis4.)