login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128419 Expansion of 8/(sqrt(1-8*x)*(sqrt(1-8*x)+4*x+7)). 2
1, 4, 25, 168, 1181, 8524, 62609, 465616, 3495013, 26423604, 200920985, 1534936440, 11771854381, 90578698396, 698921030945, 5406132020128, 41905249405301, 325434733291396, 2531523208218665, 19721766268370248, 153847524455503421, 1201601094053039596, 9395224234956935345 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Diagonal sums of number triangle A128417.
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2k)*C(2n-2k,n-2k).
D-finite with recurrence: 3*n*(15*n-22)*a(n) = 4*(75*n^2-155*n+63)*a(n-1) + (465*n^2-922*n+336)*a(n-2) + 4*(2*n-3)*(15*n-7)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(3*n+4)/(15*sqrt(Pi*n)) . - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
CoefficientList[Series[8/(Sqrt[1-8x](Sqrt[1-8x]+4x+7)), {x, 0, 30}], x] (* Harvey P. Dale, Apr 24 2012 *)
Table[Sum[2^(n-2*k)*Binomial[2*n-2*k, n-2*k], {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Feb 09 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(8/(sqrt(1-8*x)*(sqrt(1-8*x)+4*x+7))) \\ G. C. Greubel, Feb 09 2017
CROSSREFS
Sequence in context: A184755 A357223 A074422 * A226945 A225137 A229255
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 02 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 11:41 EST 2023. Contains 367656 sequences. (Running on oeis4.)