login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128419
Expansion of 8/(sqrt(1-8*x)*(sqrt(1-8*x)+4*x+7)).
2
1, 4, 25, 168, 1181, 8524, 62609, 465616, 3495013, 26423604, 200920985, 1534936440, 11771854381, 90578698396, 698921030945, 5406132020128, 41905249405301, 325434733291396, 2531523208218665, 19721766268370248, 153847524455503421, 1201601094053039596, 9395224234956935345
OFFSET
0,2
COMMENTS
Diagonal sums of number triangle A128417.
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2k)*C(2n-2k,n-2k).
D-finite with recurrence: 3*n*(15*n-22)*a(n) = 4*(75*n^2-155*n+63)*a(n-1) + (465*n^2-922*n+336)*a(n-2) + 4*(2*n-3)*(15*n-7)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(3*n+4)/(15*sqrt(Pi*n)) . - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
CoefficientList[Series[8/(Sqrt[1-8x](Sqrt[1-8x]+4x+7)), {x, 0, 30}], x] (* Harvey P. Dale, Apr 24 2012 *)
Table[Sum[2^(n-2*k)*Binomial[2*n-2*k, n-2*k], {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Feb 09 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(8/(sqrt(1-8*x)*(sqrt(1-8*x)+4*x+7))) \\ G. C. Greubel, Feb 09 2017
CROSSREFS
Sequence in context: A184755 A357223 A074422 * A372216 A226945 A225137
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 02 2007
STATUS
approved