login
A128307
Triangle, (1, 0, 1, 2, 4, 8, ...) in every column.
3
1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 2, 1, 0, 1, 8, 4, 2, 1, 0, 1, 16, 8, 4, 2, 1, 0, 1, 32, 16, 8, 4, 2, 1, 0, 1, 64, 32, 16, 8, 4, 2, 1, 0, 1, 128, 64, 32, 16, 8, 4, 2, 1, 0, 1, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0, 1, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0
OFFSET
1,7
COMMENTS
Row sums = (1, 1, 2, 4, 8, ...). A128308 = binomial transform of A128307.
Riordan array ( 1 + x^2/(1 - 2*x), x ). T(n,k) gives the number of compositions of n of the form 1 + 1 + ... + 1 + a_1 + ... + a_m beginning with k 1's and with a_1 > 1. See Shapiro, Section 5. An example is given below. - Peter Bala, Aug 18 2014
FORMULA
(1, 0, 1, 2, 4, 8, ...) in every column.
EXAMPLE
First few rows of the triangle:
1;
0, 1;
1, 0, 1;
2, 1, 0, 1;
4, 2, 1, 0, 1;
8, 4, 2, 1, 0, 1;
...
From Peter Bala, Aug 18 2014: (Start)
Row 4: [4,2,1,0,1]
Compositions Number
k = 0 4, 3 + 1, 2 + 2, 2 + 1 + 1 4
k = 1 1 + 3, 1 + 2 + 1 2
k = 2 1 + 1 + 2 1
k = 3 0
k = 4 1 + 1 + 1 + 1 1
(End)
MATHEMATICA
Join[{1, 0, 1}, Table[Join[NestWhileList[#/2&, 2^n, #!=1&], {0, 1}], {n, 0, 10}]]//Flatten (* Harvey P. Dale, Nov 25 2018 *)
CROSSREFS
Sequence in context: A343730 A343761 A336423 * A349394 A034369 A368096
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 25 2007
EXTENSIONS
More terms from Harvey P. Dale, Nov 25 2018
STATUS
approved