Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 17 2018 23:10:29
%S 1,1,1,1,2,1,12,1,8,3,1440,1,17280,3,112,45,29030400,1,522547200,3,
%T 12800,945,4828336128000,1,38626689024,4725,512512000,2025,
%U 3796230997278720000,1,113886929918361600000,42525,10436608000,1403325,551910745571328,175
%N a(n) = A001783(n)/A038610(n).
%H T. D. Noe, <a href="/A128247/b128247.txt">Table of n, a(n) for n = 1..200</a>
%e The positive integers which are <= 10 and are coprime to 10 are 1,3,7,9. So a(10) = 1*3*7*9/lcm(1,3,7,9) = 189/63 = 3.
%t Table[s = Select[Range[1, n], GCD[#, n] == 1 &]; (Times @@ s)/(LCM @@ s), {n, 30}] (* _T. D. Noe_, Oct 04 2012 *)
%o (Sage)
%o def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
%o def L(N, n): return lcm([j for j in (1..N) if gcd(j, n) == 1])
%o def A128247(n): return Gauss_factorial(n, n)/L(n, n)
%o [A128247(n) for n in (1..34)] # _Peter Luschny_, Oct 02 2012
%Y Cf. A038610, A001783.
%K nonn
%O 1,5
%A _Leroy Quet_, May 03 2007
%E More terms from _Sean A. Irvine_, Jun 21 2011