login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Mobius inversion of A103221.
5

%I #5 Feb 19 2019 20:54:39

%S 0,1,0,0,1,0,1,1,1,0,2,1,2,1,1,1,3,1,3,2,2,1,4,1,3,2,3,2,5,2,5,3,3,2,

%T 4,2,6,3,4,2,7,2,7,4,4,3,8,3,7,4,5,4,9,3,6,4,6,4,10,2,10,5,6,5,8,4,11,

%U 6,7,4,12,4,12,6,7,6,10,4,13,6,9,6,14,4,10,7,9,6,15,4,12,8,10,7,12,5,16,7

%N Mobius inversion of A103221.

%C Number of uniform n-grammic crossed antiprisms.

%C Agrees with Mobius inversion of A008615 for n != 3. - _Andrew Baxter_, Jun 06 2008

%C Number of primitive equivalence classes of period 2n billiards on an equilateral triangle. - _Andrew Baxter_, Jun 06 2008

%H Andrew M. Baxter and Ron Umble, <a href="http://arXiv.org/abs/math/0509292">Periodic Orbits of Billiards on an Equilateral Triangle</a>, Amer. Math. Monthly, 115 (No. 6, 2008), 479-491.

%F SUM_{d|n} mu(d) * A103221(n/d), where mu is Mobius function (A008683). - _Andrew Baxter_, Jun 06 2008

%p with(numtheory): A103221:=n->floor((n+2)/2)-floor((n+2)/3): A128115:=n->add(mobius(d)*A103221(n/d), d in divisors(n)): # _Andrew Baxter_, Jun 06 2008

%Y Cf. A055684.

%Y Cf. A008615, A103221.

%K nonn

%O 1,11

%A Paulo de Almeida Sachs (sachs6(AT)yahoo.de), Feb 15 2007

%E Edited by _Andrew Baxter_, Jun 06 2008