login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A127767
Inverse of number triangle A(n,k) = 1/C(n) if k <= n <= 2k, 0 otherwise, where C(n) = A000108(n).
1
1, 0, 1, 0, -1, 2, 0, 1, -2, 5, 0, 0, 0, -5, 14, 0, -1, 2, 0, -14, 42, 0, 0, 0, 0, 0, -42, 132, 0, 1, -2, 5, 0, 0, -132, 429, 0, 0, 0, 0, 0, 0, 0, -429, 1430, 0, 0, 0, -5, 14, 0, 0, 0, -1430, 4862, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4862, 16796
OFFSET
0,6
COMMENTS
It is conjectured that all elements of the triangle are integers.
EXAMPLE
Triangle begins
1;
0, 1;
0, -1, 2;
0, 1, -2, 5;
0, 0, 0, -5, 14;
0, -1, 2, 0, -14, 42;
0, 0, 0, 0, 0, -42, 132;
0, 1, -2, 5, 0, 0, -132, 429;
0, 0, 0, 0, 0, 0, 0, -429, 1430;
0, 0, 0, -5, 14, 0, 0, 0, -1430, 4862;
0, 0, 0, 0, 0, 0, 0, 0, 0, -4862, 16796;
Inverse of triangle begins
1;
0, 1;
0, 1/2, 1/2;
0, 0, 1/5, 1/5;
0, 0, 1/14, 1/14, 1/14;
0, 0, 0, 1/42, 1/42, 1/42;
0, 0, 0, 1/132, 1/132, 1/132, 1/132;
0, 0, 0, 0, 1/429, 1/429, 1/429, 1/429;
0, 0, 0, 0, 1/1430, 1/1430, 1/1430, 1/1430, 1/1430;
0, 0, 0, 0, 0, 1/4862, 1/4862, 1/4862, 1/4862, 1/4862;
0, 0, 0, 0, 0, 1/16796, 1/16796, 1/16796, 1/16796, 1/16796, 1/16796;
PROG
(PARI) row(n) = {n++; my(m = matrix(n, n, i, j, i--; j--; if ((i >= j) && (i <= 2*j), (i+1)/binomial(2*i, i), 0))); m = m^(-1); m[n, ]; } \\ Michel Marcus, Sep 30 2018
CROSSREFS
Cf. A000108.
Row sums give A127768.
Sequence in context: A074704 A025247 A341439 * A292577 A055509 A334226
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Jan 28 2007
STATUS
approved