login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127719
Floor of square root of sum of squares of n consecutive primes.
5
2, 3, 6, 9, 14, 19, 25, 32, 39, 48, 57, 68, 80, 90, 102, 115, 129, 143, 158, 173, 187, 203, 220, 237, 256, 275, 294, 313, 331, 350, 372, 394, 418, 440, 465, 488, 513, 538, 564, 590, 616, 642, 670, 697, 724, 751, 780, 811, 843, 873
OFFSET
1,1
FORMULA
a(n) = A000196(A024450(n)). - R. J. Mathar, Jan 28 2007
MAPLE
A024450 := proc(n) local i; add((ithprime(i))^2, i=1..n); end: A000196 := proc(n) floor(sqrt(n)); end: A127719 := proc(n) A000196(A024450(n)); end: for n from 1 to 30 do printf("%d, ", A127719(n)); od; # R. J. Mathar, Jan 28 2007
MATHEMATICA
a = {}; k = 0; Do[k = k + (Prime[x])^2; AppendTo[a, Floor[Sqrt[k]]], {x, 1, 50}]; a
CROSSREFS
Sequence in context: A191184 A299100 A008823 * A074150 A261243 A061925
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 25 2007
STATUS
approved