login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127704 A054525 * A127701. 2
1, 0, 2, -1, 1, 3, -1, -2, 1, 4, -1, 0, 0, 1, 5, 0, -3, -3, 0, 1, 6, -1, 0, 0, 0, 0, 1, 7, 0, 0, -1, -4, 0, 0, 1, 8, 0, -1, -3, 0, 0, 0, 0, 1, 9, 0, -2, 0, -1, -5, 0, 0, 0, 1, 10, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 1, 2, -1, -4, -1, -6, 0, 0, 0, 0, 1, 12, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 0, -2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Moebius transform of A127701.

Row sums = A127705: (1, 2, 3, 2, 5, 1, 7, 4, 6, 3, ...)

LINKS

Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)

EXAMPLE

First few rows of the triangle are:

   1;

   0,  2;

  -1,  1,  3;

  -1, -2,  1,  4;

  -1,  0,  0,  1,  5;

   0, -3, -3,  0,  1,  6;

  -1,  0,  0,  0,  0,  1,  7;

  ...

MAPLE

A054525 := proc(n, k) if n>=1 and 1<=k and k <= n then if n mod k = 0 then numtheory[mobius](n/k) ; else 0 ; fi; else 0 ; fi; end: A127701 := proc(n, k) if n<1 or k<1 or k > n then 0 ; elif n = k then n; elif k+ 1 =n then 1; else 0 ; fi; end: A127704 := proc(n, k) add( A054525(n, i)*A127701(i, k), i=1..n) ; end: for n from 1 to 30 do for k from 1 to n do printf("%d, ", A127704(n, k)) ; od: od: # R. J. Mathar, Jul 21 2009

CROSSREFS

Cf. A054525, A127701, A127705.

Sequence in context: A307641 A112377 A277760 * A307662 A050873 A324668

Adjacent sequences:  A127701 A127702 A127703 * A127705 A127706 A127707

KEYWORD

tabl,easy,sign

AUTHOR

Gary W. Adamson, Jan 24 2007

EXTENSIONS

More terms from R. J. Mathar, Jul 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 17:06 EDT 2020. Contains 336255 sequences. (Running on oeis4.)