login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127256 a(n) is the initial element of the sequence A(n) defined exactly like A119751 but with the additional condition that each of its elements must not be contained in any of the sequences A(k) for k < n. 1
1, 5, 15, 23, 33, 41, 53, 75, 89, 99, 105, 113, 153, 155, 165, 189, 215, 239, 249, 261, 281, 293, 323, 341, 363, 371, 375, 405, 411, 419, 431, 473, 519, 543, 545, 561, 575, 629, 659, 699, 725, 741, 743, 765, 785, 803, 831, 849, 893, 905, 915, 923, 933, 935 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n)=A(n,1), the first element of each sequence A(n) defined recursively as follows. Recall that A119751 is the sequence defined recursively by a(1)=1 and a(k) is the first odd number greater than a(k-1) such that 2a(k)+1 is prime and a(k)+a(j)+1 is prime for all 1<=j<k. Let A(1)=A119751, that is, A(1,k)=A119751(k). Then A(n) is the sequence defined recursively as follows: (1) A(n,1) is the first odd number not in any A(m), 1<=m<n, such that 2A(n,1)+1 is prime. (2) A(n,k) is the first odd number greater than A(n,k-1), not in any A(m), 1<=m<n, such that 2A(n,k)+1 is prime. (3) A(n,k)+A(n,j)+1 is prime for all 1<=j<k.
LINKS
EXAMPLE
a(1)=1 is the first element of A119751=1, 3, 9, 69, 429, 4089, 86529, 513099, ... so a(2)=5 since 5 is the first odd number not in A119751 such that 2*5+1 is prime. Furthermore, A(2)=5, 11, 35, 95, 221, 551, 1271, 5705,...
CROSSREFS
Sequence in context: A328249 A110702 A141394 * A136139 A029480 A029504
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jan 10 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 10:10 EDT 2024. Contains 375932 sequences. (Running on oeis4.)