|
|
|
|
1, 3, 1, 3, 0, 1, 6, 3, 0, 1, 3, 0, 0, 0, 1, 9, 3, 3, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 10, 6, 0, 3, 0, 0, 0, 1, 6, 0, 3, 0, 0, 0, 0, 0, 1, 9, 3, 0, 0, 0, 3, 0, 0, 0, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Nonzero terms in every column = A007425: (1, 3, 3, 6, 3, 9, 3,...). Row sums = A007426: (1, 4, 4, 20, 4, 16,...) A127172 * mu(n) = d(n); or A127172 * A008683 = A000005 A127172 * d(n) = tau_5(n); or A127172 * A000005 = A061200. A127172 * phi(n) = A007429: (1, 4, 5, 11, 7, 20,...); or: A127172 * A000010 = A007429. Note that A051731 * d(n) = row sums of A127172; or A051731 * A000005 = A007425. Also, A126988 * mu(n) = phi(n); or A126988 * A008683 = A000010. A126988 * phi(n) = A018804: (1, 3, 5, 8, 9, 15,...); = A127170 * mu(n).
|
|
LINKS
|
Table of n, a(n) for n=1..56.
|
|
FORMULA
|
Cube of A051731 A007425: (1, 3, 3, 6, 3, 9, 3,...) in every column k, interspersed with (k-1) zeros.
|
|
EXAMPLE
|
First few rows of the triangle are:
1;
3, 1;
3, 0, 1;
6, 3, 0, 1;
3, 0, 0, 0, 1;
9, 3, 3, 0, 0, 1;
3, 0, 0, 0, 0, 0, 1;
10, 6, 0, 3, 0, 0, 0, 1;
6, 0, 3, 0, 0, 0, 0, 0, 1;
9, 3, 0, 0, 3, 0, 0, 0, 0, 1;
...
|
|
CROSSREFS
|
Cf. A000005, A007425, A127170, A051731, A007429, A000010, A126988, A018804.
Sequence in context: A136157 A266260 A143353 * A011087 A180021 A091422
Adjacent sequences: A127169 A127170 A127171 * A127173 A127174 A127175
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Gary W. Adamson, Jan 06 2007
|
|
STATUS
|
approved
|
|
|
|