login
A126830
Ramanujan numbers (A000594) read mod 729.
1
1, 705, 252, 715, 456, 513, 23, 645, 81, 720, 255, 117, 359, 177, 459, 70, 612, 243, 524, 177, 693, 441, 555, 702, 466, 132, 0, 407, 570, 648, 584, 495, 108, 621, 282, 324, 236, 546, 72, 333, 573, 135, 689, 75, 486, 531, 75, 144, 264, 480, 405, 77, 135, 0, 369, 255
OFFSET
1,2
REFERENCES
M. H. Ashworth, Congruence and identical properties of modular forms, Diss. University of Oxford, 1968.
Oddmund Kolberg, Congruences for Ramanujan's Function ̈tau(n), Univ. Bergen Årbok Naturvit Rekke, No. 11, 1962.
LINKS
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
FORMULA
From Amiram Eldar, Jan 05 2025: (Start)
a(n) == 53 * sigma_11(n) (mod 729) for n == 2 (mod 3) (Kolberg, 1962).
a(n) == n^(-620) * sigma_1231(n) for n == 1 (mod 3) (Ashworth, 1968). (End)
MATHEMATICA
a[n_] := Mod[RamanujanTau[n], 729]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
PROG
(PARI) a(n) = ramanujantau(n) % 729; \\ Amiram Eldar, Jan 05 2025
CROSSREFS
Sequence in context: A238322 A091553 A224491 * A005845 A183795 A335092
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 25 2007
STATUS
approved