login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126829
Ramanujan numbers (A000594) read mod 243.
1
1, 219, 9, 229, 213, 27, 23, 159, 81, 234, 12, 117, 116, 177, 216, 70, 126, 0, 38, 177, 207, 198, 69, 216, 223, 132, 0, 164, 84, 162, 98, 9, 108, 135, 39, 81, 236, 60, 72, 90, 87, 135, 203, 75, 0, 45, 75, 144, 21, 237, 162, 77, 135, 0, 126, 12, 99, 171, 24, 135, 50, 78, 162
OFFSET
1,2
REFERENCES
Oddmund Kolberg, Congruences for Ramanujan's Function ̈tau(n), Univ. Bergen Årbok Naturvit Rekke, No. 11, 1962.
LINKS
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
FORMULA
a(n) == sigma_11(n) (mod 243) for n == 1 (mod 3) (Kolberg, 1962). - Amiram Eldar, Jan 05 2025
MATHEMATICA
a[n_] := Mod[RamanujanTau[n], 243]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
PROG
(PARI) a(n) = ramanujantau(n) % 243; \\ Amiram Eldar, Jan 05 2025
CROSSREFS
Sequence in context: A230333 A060530 A252997 * A171406 A025406 A025404
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Feb 25 2007
STATUS
approved