login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126160 Number of betrothed pairs (m,n) with m <=10^k (and k=1,2,3,...), where a betrothed pair satisfies sigma(m)=sigma(n)=m+n+1 and m<n. 1
0, 1, 2, 8, 9, 17, 46, 79, 180, 404, 882, 1946, 4122 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Also called quasi-amicable pairs, or reduced amicable pairs.
LINKS
J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
P. Pollack, Quasi-Amicable Numbers are Rare, J. Int. Seq. 14 (2011) # 11.5.2.
EXAMPLE
a(7)=46 because there are 46 betrothed pairs (m,n) with m<=10^7
MATHEMATICA
s[n_]:=DivisorSigma[1, n]-n; BetrothedNumberQ[n_]:=If[s[s[n]-1]==n+1 && n>1, True, False]; BetrothedPairList[k_]:=(anlist=Select[Range[k], BetrothedNumberQ[ # ] &]; prlist=Table[Sort[{anlist[[n]], s[anlist[[n]]]-1}], {n, 1, Length[anlist]}]; Union[prlist, prlist]); data=BetrothedPairList[10^6]; Table[Length[Select[data, First[ # ]<10^k &]], {k, 1, 6}]
CROSSREFS
Sequence in context: A230314 A220263 A033492 * A118962 A096033 A073413
KEYWORD
nonn,hard,more
AUTHOR
Ant King, Dec 19 2006
EXTENSIONS
a(13) from Giovanni Resta, Jul 24 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:30 EST 2023. Contains 367679 sequences. (Running on oeis4.)