login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125916
Sprague-Grundy values for octal game .15 (Guiles).
1
0, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2
OFFSET
0,7
COMMENTS
After the initial 0 the sequence is periodic with period 10.
This game is called "Guiles" in Winning Ways.
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982; see Chapter 4, p. 104.
LINKS
R. K. Guy and C. A. B. Smith, The G-values of various games, Proc. Cambridge Philos. Soc. 52 (1956), 514-526. See Table 2.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
From Colin Barker, Apr 02 2019: (Start)
G.f.: x*(1 + x + x^3 + x^4 + 2*x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-10) for n>10.
(End)
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 1, 1, 0, 1, 1, 2, 2, 1, 2, 2}, 100] (* Ray Chandler, Aug 26 2015; offset 0 corrected by Georg Fischer, Apr 02 2019 *)
PROG
(PARI) concat(0, Vec(x*(1 + x + x^3 + x^4 + 2*x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^80))) \\ Colin Barker, Apr 02 2019
CROSSREFS
Sequence in context: A300480 A342870 A143537 * A283468 A100244 A059689
KEYWORD
nonn,easy
AUTHOR
Richard Sabey, Jan 24 2007
EXTENSIONS
Extended by Ray Chandler, Aug 26 2015
Added initial 0 and changed offset. - N. J. A. Sloane, Jul 02 2016
STATUS
approved