OFFSET
1,1
COMMENTS
Are there infinitely many primitive doubly abundant numbers?
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
EXAMPLE
42 is a primitive doubly abundant number because it is abundant (s(42) = 54), the sum of its proper divisors is abundant (s(54) = 66) and no divisor of 42 is doubly abundant.
MATHEMATICA
s[n_] := DivisorSigma[1, n] - n; q[n_] := Module[{s1 = s[n]}, s1 > n && s[s1] > s1]; primQ[n_] := q[n] && !AnyTrue[Most[Divisors[n]], q]; Select[Range[900], primQ] (* Amiram Eldar, Mar 11 2024 *)
PROG
(Haskell)
import Data.List (intersect)
a125640 n = a125640_list !! (n-1)
a125640_list = f a125639_list [] where
f (x:xs) ys = if null (a027751_row' x `intersect` ys)
then x : f xs (x : ys) else f xs ys
-- Reinhard Zumkeller, Oct 31 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Gabriel Cunningham (gabriel.cunningham(AT)gmail.com), Nov 28 2006
EXTENSIONS
Data corrected by Reinhard Zumkeller, Oct 31 2015
STATUS
approved