login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125372
Number of base-9 circular n-digit numbers with adjacent digits differing by 5 or less.
1
1, 9, 69, 489, 3773, 29359, 229371, 1793675, 14030597, 109759917, 858660839, 6717419531, 52551380915, 411117567181, 3216236722495, 25161121675789, 196839383096437, 1539905230937741, 12046919094905577, 94244929368967819
OFFSET
0,2
COMMENTS
[Empirical] a(base, n) = a(base-1, n) + F(5) for base >= 5*floor(n/2) + 1 and F(d) is the largest coefficient in (1 + x + ... + x^(2d))^n.
FORMULA
G.f.: (1 - 6*x^2 - 52*x^3 + 15*x^4 + 68*x^5 - 5*x^6 - 18*x^7)/((1 + x)*(1 - 2*x - x^2 + x^3)*(1 - 8*x + x^2 + 3*x^3)). - M. F. Hasler, May 03 2015
For n < 4, a(n) = 4*6^n - 3*5^n. - M. F. Hasler, May 03 2015
a(n) = 9*a(n-1) - 6*a(n-2) - 26*a(n-3) + 5*a(n-4) + 17*a(n-5) - a(n-6) - 3*a(n-7) for n > 7. - Wesley Ivan Hurt, Oct 08 2017
MATHEMATICA
CoefficientList[Series[(1 - 6*x^2 - 52*x^3 + 15*x^4 + 68*x^5 - 5*x^6 - 18*x^7)/((1 + x)*(1 - 2*x - x^2 + x^3)*(1 - 8*x + x^2 + 3*x^3)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 08 2017 *)
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-1](($[i]`-$[(i+1)mod N]`>5)+($[(i+1)mod N]`-$[i]`>5))
CROSSREFS
Sequence in context: A196490 A297593 A198691 * A165147 A075045 A361139
KEYWORD
nonn,base
AUTHOR
R. H. Hardin, Dec 28 2006
STATUS
approved