login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125301 a(3n) = n, a(3n+1) = (n+2)*a(3n), a(3n+2) = (n+2)*a(3n+1). 1
0, 0, 0, 1, 3, 9, 2, 8, 32, 3, 15, 75, 4, 24, 144, 5, 35, 245, 6, 48, 384, 7, 63, 567, 8, 80, 800, 9, 99, 1089, 10, 120, 1440, 11, 143, 1859, 12, 168, 2352, 13, 195, 2925, 14, 224, 3584, 15, 255, 4335, 16, 288, 5184, 17, 323, 6137, 18, 360, 7200, 19, 399, 8379, 20 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

From a competency test.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,-6,0,0,4,0,0,-1).

FORMULA

From Colin Barker, Jan 24 2017: (Start)

a(n) = 4*a(n-3) - 6*a(n-6) + 4*a(n-9) - a(n-12) for n>11.

G.f.: x^3*(1 + 3*x + 9*x^2 - 2*x^3 - 4*x^4 - 4*x^5 + x^6 + x^7 + x^8) / ((1 - x)^4*(1 + x + x^2)^4).

(End)

MAPLE

a:=proc(n): if n mod 3=0 then n/3 elif n mod 3 = 1 then (n+5)*a(n-1)/3 else (n+4)*a(n-1)/3 fi end: seq(a(n), n=0..75); # Emeric Deutsch, Jan 01 2007

MATHEMATICA

LinearRecurrence[{0, 0, 4, 0, 0, -6, 0, 0, 4, 0, 0, -1}, {0, 0, 0, 1, 3, 9, 2, 8, 32, 3, 15, 75}, 70] (* Harvey P. Dale, Jul 31 2018 *)

PROG

(PARI) concat(vector(3), Vec(x^3*(1 + 3*x + 9*x^2 - 2*x^3 - 4*x^4 - 4*x^5 + x^6 + x^7 + x^8) / ((1 - x)^4*(1 + x + x^2)^4) + O(x^100))) \\ Colin Barker, Jan 24 2017

CROSSREFS

Sequence in context: A094724 A008564 A060956 * A263559 A262343 A140985

Adjacent sequences:  A125298 A125299 A125300 * A125302 A125303 A125304

KEYWORD

nonn,easy

AUTHOR

Trent Stratton (trent.stratton(AT)gov.bc.ca), Dec 08 2006

EXTENSIONS

Solution from N. J. A. Sloane, Dec 08 2006

More terms from Emeric Deutsch, Jan 01 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 20:17 EDT 2019. Contains 328373 sequences. (Running on oeis4.)