login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125091
Triangle read by rows: T(n,k) = (1/6)*k*(k+1)*(k+2)*binomial(n,k) (1 <= k <= n).
0
1, 2, 4, 3, 12, 10, 4, 24, 40, 20, 5, 40, 100, 100, 35, 6, 60, 200, 300, 210, 56, 7, 84, 350, 700, 735, 392, 84, 8, 112, 560, 1400, 1960, 1568, 672, 120, 9, 144, 840, 2520, 4410, 4704, 3024, 1080, 165, 10, 180, 1200, 4200, 8820, 11760, 10080, 5400, 1650, 220, 11
OFFSET
1,2
COMMENTS
T(n,n) = n*(n+1)*(n+2)/6 = A000292(n).
Sum_{k=1..n} T(n,k) = 2^n*n*(n+2)*(n+7)/48 = A055585(n-1).
EXAMPLE
Triangle starts:
1;
2, 4;
3, 12, 10;
4, 24, 40, 20;
5, 40, 100, 100, 35;
6, 60, 200, 300, 210, 56;
7, 84, 350, 700, 735, 392, 84;
MAPLE
T:=(n, k)->k*(k+1)*(k+2)*binomial(n, k)/6: for n from 1 to 11 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
Flatten[Table[(k(k+1)(k+2)Binomial[n, k])/6, {n, 20}, {k, n}]] (* Harvey P. Dale, Jan 23 2016 *)
CROSSREFS
Cf. A055585.
Cf. A000292.
Sequence in context: A059662 A259630 A114883 * A209048 A181327 A257503
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 19 2006
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2006
STATUS
approved