login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Central terms of triangle A125053.
5

%I #37 Aug 02 2021 06:46:03

%S 1,3,21,327,9129,396363,24615741,2068052367,225742096209,

%T 31048132997523,5252064083753061,1071525520294178007,

%U 259439870666594250489,73542221109962636293083,24125551094579137082039181,9068240688454120376775401247,3871645204706420218816959159969

%N Central terms of triangle A125053.

%C Triangle A125053 is a variant of triangle A008301 (enumeration of binary trees) such that the leftmost column is the secant numbers (A000364).

%C Right edge of triangle A210108.

%C Apparently all terms (except the initial 1) have 3-valuation 1. - _F. Chapoton_, Aug 02 2021

%H Vincenzo Librandi, <a href="/A125054/b125054.txt">Table of n, a(n) for n = 0..100</a>

%H Peter Bala, <a href="/A002439/a002439.pdf">Some S-fractions related to the expansions of sin(ax)/cos(bx) and cos(ax)/cos(bx)</a>

%F Binomial transform of A000182 (e.g.f. tan(x)).

%F a(n) = Sum_{k=0..n} A130847(n,k)*2^k. - _Philippe Deléham_, Jul 22 2007

%F G.f.: 1/(1-sqrt(x))/Q(0), where Q(k)= 1 + sqrt(x) - x*(2*k+1)*(2*k+2)/(1 - sqrt(x) - x*(2*k+2)*(2*k+3)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, Apr 27 2013

%F G.f.: Q(0)/(1-3*x), where Q(k) = 1 - 4*x^2*(2*k+1)*(2*k+3)*(k+1)^2/( 4*x^2*(2*k+1)*(2*k+3)*(k+1)^2 - (1 - 8*x*k^2 - 8*x*k -3*x)*(1 - 8*x*k^2 - 24*x*k -19*x)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 23 2013

%F G.f.: Q(0)/(1-1*x), where Q(k) = 1 - (2*k+1)*(2*k+2)*x/(x*(2*k+1)*(2*k+2) - (1-x)/(1 - (2*k+2)*(2*k+3)*x/(x*(2*k+2)*(2*k+3) - (1-x)/Q(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Nov 21 2013

%F a(n) ~ 2^(4*n+5) * n^(2*n+3/2) / (exp(2*n) * Pi^(2*n+3/2)). - _Vaclav Kotesovec_, May 30 2015

%F From _Peter Bala_, May 11 2017: (Start)

%F O.g.f. as an S-fraction: A(x) = 1/(1 - 3*x/(1 - 4*x/(1 - 15*x/(1 - 16*x/(1 - 35*x/(1 - 36*x/(1 - ...))))))), where the unsigned coefficients in the partial numerators [3, 4, 15, 16, 35, 36, ...] come in pairs of the form 4*n^2 - 1, 4*n^2 for n = 1,2,....

%F A(x) = 1/(1 + 3*x - 6*x/(1 - 2*x/(1 + 3*x - 20*x/(1 - 12*x/(1 + 3*x - 42*x/(1 - 30*x/(1 + 3*x - ...))))))), , where the unsigned coefficients in the partial numerators [6, 2, 20, 12, 42, 30, ...] are obtained from the sequence [2, 6, 12, 20, ..., n*(n + 1), ...] by swapping adjacent terms. (End)

%t b[n_]:=n!*SeriesCoefficient[Tan[x],{x,0,n}]; Table[Sum[Binomial[n,k]*b[2*k+1],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, May 30 2015 *)

%Y Cf. A125053, A125055, A000182.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 21 2006