login
a(n) is the constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k)^3.
4

%I #27 Jan 07 2021 10:33:22

%S 1,0,0,62,332,0,0,80006,531524,0,0,173607568,1226700784,0,0,

%T 455805857978,3321800235936,0,0,1325490660318216,9841000101286172,0,0,

%U 4108826483323392880,30886378286619335592,0,0,13306426381421174346512,100916492010297213463566

%N a(n) is the constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k)^3.

%C From _Robert Israel_, Nov 09 2017: (Start)

%C a(n) is the coefficient of x^(3*n*(n+1)/2) in Product_{k=0..n} (x^(2*k)+1)^3.

%C a(n) = 0 if n == 1 or 2 (mod 4). (End)

%H Ray Chandler, <a href="/A124995/b124995.txt">Table of n, a(n) for n = 0..1114</a> (terms < 10^1000)

%H Ovidiu Bagdasar and Dorin Andrica, <a href="https://dx.doi.org/10.1109/ICMSAO.2017.7934928">New results and conjectures on 2-partitions of multisets</a>, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).

%p seq(coeff(mul(x^k+1/x^k,k=1..n)^3,x,0),n=0..50); # _Robert Israel_, Nov 09 2017

%o (PARI) a(n) = polcoef(prod(k=1, n, (x^k + 1/x^k)^3), 0); \\ _Michel Marcus_, Jan 07 2021

%Y For constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k)^q for other values of q see A063865, A047653, A124996.

%K nonn

%O 0,4

%A _N. J. A. Sloane_, Jul 12 2008