The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124995 a(n) is the constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k)^3. 3
 1, 0, 0, 62, 332, 0, 0, 80006, 531524, 0, 0, 173607568, 1226700784, 0, 0, 455805857978, 3321800235936, 0, 0, 1325490660318216, 9841000101286172, 0, 0, 4108826483323392880, 30886378286619335592, 0, 0, 13306426381421174346512, 100916492010297213463566 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS From Robert Israel, Nov 09 2017: (Start) a(n) is the coefficient of x^(3*n*(n+1)/2) in Product_{k=0..n} (x^(2*k)+1)^3. a(n) = 0 if n == 1 or 2 (mod 4). (End) LINKS Ray Chandler, Table of n, a(n) for n = 0..1114 (terms < 10^1000) Ovidiu Bagdasar and Dorin Andrica, New results and conjectures on 2-partitions of multisets, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). MAPLE seq(coeff(mul(x^k+1/x^k, k=1..n)^3, x, 0), n=0..50); # Robert Israel, Nov 09 2017 PROG (PARI) a(n) = polcoef(prod(k=1, n, (x^k + 1/x^k)^3), 0); \\ Michel Marcus, Jan 07 2021 CROSSREFS For constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k)^q for other values of q see A063865, A047653, A124996. Sequence in context: A100160 A223072 A010746 * A020191 A212834 A202959 Adjacent sequences:  A124992 A124993 A124994 * A124996 A124997 A124998 KEYWORD nonn AUTHOR N. J. A. Sloane, Jul 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 08:18 EST 2022. Contains 350464 sequences. (Running on oeis4.)