login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers in a perpendicular plane intersecting a 3D clockwise spiral produced by powers of 2.
1

%I #40 Feb 23 2024 06:55:26

%S 1,5,35,157,1123,5021,35939,160669,1150051,5141405,36801635,164524957,

%T 1177652323,5264798621,37684874339,168473555869,1205915978851,

%U 5391153787805,38589311323235,172516921209757,1234857962343523

%N Numbers in a perpendicular plane intersecting a 3D clockwise spiral produced by powers of 2.

%C The general formula for powers of k integer is a(n) = k^((1/4)*(10*n - 7 - (-1)^n)) + k^((1/4)*(10*n - 1 + (-1)^n)) - a(n-1), with a(0)=1 and where k is an integer value. If we replace k with "i" or "-i" where i=sqrt(-1), we get a periodic complex sequence (period 8).

%H Charles R Greathouse IV, <a href="/A124793/b124793.txt">Table of n, a(n) for n = 1..1329</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,32,32).

%F a(n) = 2^((1/4)*(10*n - 7 - (-1)^n)) + 2^((1/4)*(10*n - 1 + (-1)^n)) - a(n-1), with a(0)=1.

%F From _Colin Barker_, Jul 07 2012: (Start)

%F a(n) = -a(n-1) + 32*a(n-2) + 32*a(n-3).

%F G.f.: x*(1+2*x)*(1+4*x)/((1+x)*(1-32*x^2)). (End)

%F a(2n) = 3/31 + 19*32^n/124, a(2n+1) = -3/31 + 136*32^n/124. [_R. J. Mathar_, Jul 10 2012]

%e Write powers of 2 in a sort of 3D clockwise spiral. After the initial 1 (2^0) move right till 2^1=2 (practically only one step); then move down till 2^2=4 (3,4); then left till 2^3=8 (5,6,7,8). When writing number 5 we are in the same column of 1 so 5 is the second number of the sequence. Then move up till 2^4=16. Then move up perpendicularly to the plane till 2^5=32 and again right till 2^6=64. The number 35 is in the sequence because it lies in the same line as 1 and 5. The process continues down, left, up, perpendicular, right and so on.

%p P:=proc(n) local a,i,x,y; a:=1; print(a); for i from 1 by 1 to n do x:=1/4*(10*i-7-(-1)^i); y:=1/4*(10*i-1+(-1)^i); a:=2^x+2^y-a; print(a); od; end: P(100);

%t LinearRecurrence[{-1, 32, 32}, {1, 5, 35}, 25] (* _Paolo Xausa_, Feb 23 2024 *)

%Y Cf. A108981, A001107.

%K easy,nonn

%O 1,2

%A _Paolo P. Lava_ and _Giorgio Balzarotti_, Jun 27 2007