login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124793
Numbers in a perpendicular plane intersecting a 3D clockwise spiral produced by powers of 2.
1
1, 5, 35, 157, 1123, 5021, 35939, 160669, 1150051, 5141405, 36801635, 164524957, 1177652323, 5264798621, 37684874339, 168473555869, 1205915978851, 5391153787805, 38589311323235, 172516921209757, 1234857962343523
OFFSET
1,2
COMMENTS
The general formula for powers of k integer is a(n) = k^((1/4)*(10*n - 7 - (-1)^n)) + k^((1/4)*(10*n - 1 + (-1)^n)) - a(n-1), with a(0)=1 and where k is an integer value. If we replace k with "i" or "-i" where i=sqrt(-1), we get a periodic complex sequence (period 8).
FORMULA
a(n) = 2^((1/4)*(10*n - 7 - (-1)^n)) + 2^((1/4)*(10*n - 1 + (-1)^n)) - a(n-1), with a(0)=1.
From Colin Barker, Jul 07 2012: (Start)
a(n) = -a(n-1) + 32*a(n-2) + 32*a(n-3).
G.f.: x*(1+2*x)*(1+4*x)/((1+x)*(1-32*x^2)). (End)
a(2n) = 3/31 + 19*32^n/124, a(2n+1) = -3/31 + 136*32^n/124. [R. J. Mathar, Jul 10 2012]
EXAMPLE
Write powers of 2 in a sort of 3D clockwise spiral. After the initial 1 (2^0) move right till 2^1=2 (practically only one step); then move down till 2^2=4 (3,4); then left till 2^3=8 (5,6,7,8). When writing number 5 we are in the same column of 1 so 5 is the second number of the sequence. Then move up till 2^4=16. Then move up perpendicularly to the plane till 2^5=32 and again right till 2^6=64. The number 35 is in the sequence because it lies in the same line as 1 and 5. The process continues down, left, up, perpendicular, right and so on.
MAPLE
P:=proc(n) local a, i, x, y; a:=1; print(a); for i from 1 by 1 to n do x:=1/4*(10*i-7-(-1)^i); y:=1/4*(10*i-1+(-1)^i); a:=2^x+2^y-a; print(a); od; end: P(100);
MATHEMATICA
LinearRecurrence[{-1, 32, 32}, {1, 5, 35}, 25] (* Paolo Xausa, Feb 23 2024 *)
CROSSREFS
Sequence in context: A005562 A097872 A184707 * A048515 A219973 A100739
KEYWORD
easy,nonn
AUTHOR
STATUS
approved