login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124259
Smallest k such that n + n^2 + ... + n^k is not squarefree.
2
4, 6, 2, 1, 4, 14, 2, 1, 1, 9, 2, 1, 4, 6, 2, 1, 2, 1, 2, 1, 4, 3, 2, 1, 1, 2, 1, 1, 4, 3, 2, 1, 4, 9, 2, 1, 4, 4, 2, 1, 4, 20, 2, 1, 1, 9, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 5, 2, 1, 4, 2, 1, 1, 4, 25, 2, 1, 4, 4, 2, 1, 4, 2, 1, 1, 4, 7, 2, 1, 1, 4, 2, 1, 4, 6, 2, 1, 2, 1, 2, 1, 4, 9, 2, 1, 2, 1, 1, 1, 4, 20, 2, 1
OFFSET
1,1
LINKS
FORMULA
A124260(n) = Sum_{k=1..a(n)} n^k.
a(A013929(n)) = 1.
EXAMPLE
n=5: 5 = A005117(4),
5 + 5^2 = 30 = 2*3*5 = A005117(19),
5 + 5^2 + 5^3 = 155 = 5*31 = A005117(95),
5 + 5^2 + 5^3 + 5^4 = 780 = (2^2)*3*5*13 not squarefree,
therefore a(5) = 4 and A124260(5) = 780.
MAPLE
A124259 := proc(n)
local k ;
if n =1 then
return 4;
end if;
for k from 1 do
if not numtheory[issqrfree](n*(n^k-1)/(n-1)) then
return k;
end if
end do:
end proc:
seq(A124259(n), n=1..40) ; # R. J. Mathar, Jan 13 2021
MATHEMATICA
a[n_] := Module[{k = 1, s = n}, While[SquareFreeQ[s], k++; s += n^k]; k]; Array[a, 100] (* Amiram Eldar, Dec 26 2020 *)
PROG
(PARI) a(n) = my(k=1); while (issquarefree(sum(i=1, k, n^i)), k++); k; \\ Michel Marcus, Dec 26 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 23 2006
EXTENSIONS
Data corrected by Amiram Eldar, Dec 26 2020
STATUS
approved