Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Dec 22 2023 08:04:44
%S 1,1,1,2,1,1,2,2,1,3,1,0,2,0,2,2,1,0,3,0,1,4,0,2,2,1,0,4,2,2,2,0,1,0,
%T 0,2,3,0,0,0,1,2,4,2,0,3,2,2,2,3,1,0,0,0,4,0,2,0,2,0,2,2,0,6,1,0,0,2,
%U 0,4,2,0,3,0,0,2,0,0,0,0,1,5,2,2,4,0,2
%N Expansion of psi(q) * phi(-q^10) * chi(-q^5) / chi(-q^2) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Number 38 of the 74 eta-quotients listed in Table I of Martin (1996).
%H G. C. Greubel, <a href="/A124233/b124233.txt">Table of n, a(n) for n = 0..10000</a>
%H Yves Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
%H Michael Somos, <a href="/A030203/a030203.txt">Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers</a>, 2016.
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.
%F Expansion of eta(q^2) * eta(q^4) * eta(q^5) * eta(q^10) / (eta(q) * eta(q^20)) in powers of q.
%F Euler transform of period 20 sequence [ 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, 1, -1, 1, 0, 0, -1, 1, 0, 1, -2, ...].
%F Moebius transform is period 20 sequence [ 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...].
%F a(n) is multiplicative with a(2^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 3, 7, 9 (mod 20), a(p^e) = (1 + (-1)^e) / 2 if p == 11, 13, 17, 19 (mod 20).
%F G.f.: 1 + Sum_{k>0} x^k * (1 + x^(2*k)) * (1 + x^(6*k)) / (1 + x^(10*k)).
%F a(2*n) = a(5*n) = a(n), a(20*n + 11) = a(20*n + 13) = a(20*n + 17) = a(20*n + 19) = 0.
%F a(n) = A035170(n) unless n=0. a(2*n + 1) = A129390(n). a(4*n + 3) = 2 * A033764(n).
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(5) = 1.404962... . - _Amiram Eldar_, Dec 22 2023
%e G.f. = 1 + q + q^2 + 2*q^3 + q^4 + q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + q^10 + ...
%t a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ -20, #] &]]; (* _Michael Somos_, Jul 09 2015 *)
%t a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^4] QPochhammer[ q^5] QPochhammer[ q^10] / (QPochhammer[ q] QPochhammer[ q^20]), {q, 0, n}]; (* _Michael Somos_, Jul 09 2015 *)
%o (PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -20, d)))};
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^10 + A) / eta(x + A) / eta(x^20 + A), n))};
%Y Cf. A033764, A035170, A129390.
%Y Cf. A000122, A000700, A010054, A121373.
%K nonn,easy,mult
%O 0,4
%A _Michael Somos_, Oct 21 2006